The European Bitumen Association

EUROBITUME

Sustainability Assessment in the bitumen & asphalt industry

Mike Southern Senior Technical Advisor

1

Sustainability – Why?

- Environmental Impact Assessment an introduction
- What is the driver for environmental impact assessment?
- How is Eurobitume contributing?
 the Eurobitume Life-Cycle Inventory
- Some Environmental Impact assessment models

The European Bitumen Association

Question: How to quantify sustainability?

• Which is best/worst for the environment??

Answer; It depends....

The European Bitumen Association

Figure 41 Influence of the change in cleaning frequency of the reusable systems on the shadow costs. In the basic scenario, the reusable systems are cleaned each time after use. For the sensitivity analysis, (cleaned 2x) means cleaned each time after being used twice, (cleaned 4.5x) cleaned after being used 4.5 times

an anavaga

Base assumptions are very important, e.g.;

- $PO_4^{3-} = \notin 9/kg$ (dishwasher powder)
- CO₂ = €0,05/kg

The shadow costs (\notin 2.52) of the reusable porcelain cup and saucer are almost entirely (98%) determined by the user stage (see Table 38). The other stages make a negligible contribution.

During the user stage of the reusable porcelain cup and saucer, the energy consumption of the dishwasher determines the environmental burden of this system. The change in this energy use clearly influences the shadow costs (see Table 45).

The total shadow costs of \in 1.42 for the disposable polystyrene cup is largely determined by the production of polystyrene and that of the cup itself (see Table 40). The end of life stage, which comprises collection of the used cups, recycling of the cup and processing of the waste, produces a net negative shadow cost.

The question "What is better for the environment, drinking coffee out of a disposable or reusable cup?" can therefore only be answered on the basis of the specific operating situation.

eurobitume

Regulatory Framework

- Construction Products Regulation (Regulation (EU) No 305/2011)
 - Establishes 'Basic Work Requirements' (BWR)
 - Mechanical resistance and stability
 - Safety in case of fire
 - Hygiene, health and the environment
 - Safety and accessibility in use
 - Protection against noise

5

- Energy economy and heat retention
- Sustainable use of natural resources;
 - The basic requirement for construction works on sustainable use of natural resources should notably take into account the recyclability of construction works, their materials and parts after demolition, the durability of construction works and the use of environmentally compatible raw and secondary materials in construction works.
- The BWRs should be incorporated into product standards

eurobitume

The European Bitumen Association

Green Public Procurement

European Commission

- Public authorities are major consumers
- GPP is a "voluntary instrument", which means that Member States and public authorities can determine the extent to which they implement it
- The EU GPP criteria are developed to facilitate the inclusion of green requirements in public tender documents. While the adopted EU GPP criteria aim to reach a good balance between environmental performance, cost considerations, market availability and ease of verification, procuring authorities may choose, according to their needs and ambition level, to include all or only certain requirements in their tender documents.

Environmental Product Declarations (EPD)

- The rule book is based upon "Product Category Rules" (PCR)
 - Establishes the playing field to enable an impact assessment and, potentially, comparison between one system and another.

The European Bitumen Association

EUROPEAN STANDARD	EN 15804	
NORME EUROPÉENNE		
EUROPÄISCHE NORM	1001001 2012	

ICS 91.010.99

English Version

Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

Contribution des ouvrages de construction au éveloppement durable - Déclarations environnementales sur les produits - Régies régissant les catégories de produits de construction Nachhaltigkelt von Bauwerken -Umweitproduktdeklarationen - Grundregein für die Produktkategorie Bauprodukte

This European Standard was approved by CEN on 13 November 2011.

CEN members are bound to compry with the CENCENELEC Internal Regulations which slipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical reterences concerning such national standards may be obtained on application to the CENCENELE Anagement Centle or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translatio under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finiand, France, Germany, Greece, Hungary, Iceand, Iteland, Italy, Lativa, Lithuania, Luxembourg, Marta, Netherlands, Norway, Poland, Portuga, Romania, Slovakia, Slovan, Suben, Suber, Subergand, Turdey and United Kingdom.

1_		A 1 - 3		A	4 - 5	B 1 - 7					C 1 - 4					D	
PRODUCT stage			CONSTI PRO st	RUCTION CESS age	USE STAGE				END OF LIFE stage					Benefits and loads beyond the system boundary			
	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	C3	C4			
	Rew material supply	Transport	Manufacturing	Transport	Construction- installation proces	Пse	Mainterance	Repair	Replacement	Refurbishment	De-construction demolition	Transport	Waste processing	Disposal	8ei 20 20	Reuse- Rocovory Recycling- potential	
				scenario	scenario	scenario B6 scenario	scenario scenario scenario scenario B6 Operational energy use scenario			scenario	scenario	scenario	scenario	iy f dei		n	
						B7 Operational water use scenario								2			

Which system to use?

The European Bitumen Association

EN15804 +A1

- · Currently used for vertical construction El systems;
 - will continue to be used up to 2022
- 17 indicators;
 - 7 principal indicators

EN15804 +A2

- · Currently not widely used in El Assessment models
- 19 indicators
 - Some indicators are different to those in +A1;
 - Allows differentiation between fossil-derived and biogenic materials
 - 13 principal indicators
- Other El Assessment systems also available;
 - Product Environmental Footprint (PEF)
 - ReCipE (research tool)
 - Environdec® EPD system
 - ...
 - Most have similar, but different, El endpoints
- Most Highway administrations focused only on GWP

Definitions: LCI, LC(I)A

Life-Cycle Inventory:

- An inventory of flows from and to nature for a product system.
- Includes inputs of water, energy and raw materials, and releases to air, land and water
- Related to a defined <u>functional</u> (or <u>declared</u>) unit

Life-Cycle (Impact) Assessment:

- a technique to assess environmental impacts associated with all the stages of a product's life;
- from raw material extraction, materials processing, manufacture, distribution, use, repair and maintenance, ...
- ...and disposal or recycling/re-use.

LCI & LCA The European Bitumen Association LIFE CYCLE ASSESSMENT LIFE CYCLE INVENTORY EMISSIONS TO THE IMPACT ON THE RESOURCE **PRODUCT LIFE CYCLE ENVIRONMENT** CONSUMPTION **ENVIRONMENT** Material ENVIRONMENT extraction AIR AIR AIR Processing LIFE WATER Distribution WATER WATER Use SOIL SOIL SOIL End of life eurobitume 10

LCI: Important considerations

System Boundaries

- Define what is considered within the scope of an LCI (and what is not!)
- -System definition is critical if the intention is comparability with other LCIs
- Ground rules not yet fully established!

Allocation Methodologies

- Used to partition environmental load when several products are included in the same process
- <u>Caution</u>; Avoid double counting!
 - Or not counting at all!

The European Bitumen Association

The European Bitumen Association

Eurobitume Bitumen Life-Cycle Inventory

- The LCI is based upon a hypothetical refinery, based in the ARA* region and running a typical crude diet used for bitumen production.
 - The declared unit is 1 tonne of paving bitumen, (EN 12591)
- The LCI data are valid for bitumen produced and loaded in a European refinery.
 - it is a "cradle to gate" study.

- The LCI is representative as an average value applicable to bitumen produced in **any** refinery in Europe.
- Transport to customer and/or depot is not included in the LCI

eurobitume

¹³ * Amsterdam, Rotterdam, Antwerp

Why use the Eurobitume LCI?

- Other LCI databases are available (e.g. EcoInvent, GaBi, ESU), but...
- Eurobitume has selected reliable, publicly available foreground data sources for the life-cycle stages;
 - International Oil & Gas Producers Association for crude oil extraction
 - Actual ship data for transportation
 - Emission factors from International Maritime Organisation
 - Concawe (European oil refiners association) for refinery data
 - Background data from EcoInvent
- Database is available in Excel format for importing into LCI software (e.g. SimaPro)

What changed from 2012?

The European Bitumen Association

5-year rolling average for Crude oil extraction data

FSU

000 0,00

New Ship

Refinery allocation methodology

LCIA

Next steps

- Updated crude extraction data
- Revision of shipping data to include IMO 2020 regulations
- Output data to be made available for inclusion in EPD format

 According to EN 15804 +A1 and +A2

Sustainability – Why?

The European Bitumen Association

What is the driver for environmental impact assessment?

- Construction Products Regulation requires sustainability assessment;
 - Environmental Product Declarations are the vehicle for this activity
- European Commission providing EU Member states with Green Public Procurement Criteria;
 - Some member states already incorporating these into the bid process

How is Eurobitume contributing?

 Eurobitume has prepared a 'Cradle to Gate' LCI (and LCIA) to be useable for preparation of Environmental Product Declarations

PIARC reports on pavement sustainability

The European Bitumen Association

GREEN PAVING SOLUTIONS AND SUSTAINABLE PAVEMENT MATERIALS STATE OF THE ART OF BEST PRACTICES, CHALLENGES, NEW & EMERGING TECHNOLOGIES TECHNICAL COMMITTEE D.2 ROAD PAVEMENTS

eurobitume

Environmental Product Declarations

The European Bitumen Association

A 1 - 3 PRODUCT stage A 4 - 5 CONSTRUCTION PROCESS stage				B 1 - 7					C 1 - 4					D	
				RUCTION DCESS tage	USE STAGE					END OF LIFE stage					Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	C3	C4		
Rew material supdy	Transport	Manufacturing	Transport	Construction- installation proces	esn	Maintenance	Repair	Replacement	Refurbishment	De-construction demolition	Transport	Waste processing	Disposal		Reuse- Recovery Recycling- potential
			scenario	scenario	scenario	scenario scenario scenario scenario			scenario scenario scenario			scenario			
					B6 Operational energy use										
					scenario										
					B7 Operational water use										
·					scenario	scenario									

19

PIARC report - Reducing the life cycle carbon footprint of The European Bitumen Association pavements

	Production stage			Constr stage	uction	Use stage		End-of	f-life	beyond system boundaries		
asPECT	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
CHANGER	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
DUBOCALC	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
ECORCE	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
GHGC	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
НАССТ	A1	A2	A3	<mark>A</mark> 4	A5	B1	B2-4	C1	C2	C3	C4	D
PALATE	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
SEVE	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
EKA	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D
CGCT	A1	A2	A3	A4	A5	B1	B2-4	C1	C2	C3	C4	D

Key; dark blue = covered in detail, light blue = covered more superficially, white = not covered

Table 2 presents a comparison of the output flows provided by the different models. This demonstrates that some models consider sustainability endpoints other than CO₂e

Different model outputs for same input data

21 Source; PIARC report - Reducing the life cycle carbon footprint of pavements

Summary

- Environmental Impact Assessment is complex
 - Numerous endpoints; difficult to compare
 - Numerous different systems; difficult to provide information in a form that can be used for all
 - Principal focus for most models is Global Warming Potential (GWP)
 - Other indicators are also important, but not always taken into account

Eurobitume LCI

- Uses publicly available data for foreground flows
- Being updated to provide input for EPDs according to EN 15804 +A1 & +A2
- Numerous different pavement El Assessment models
 - Input data for raw materials varies
 - Life-cycle stages included in the models vary
 - Important to consider comparability of models if comparability of results is required

The European Bitumen Association

Thanks for your attention

Questions? Comments?

