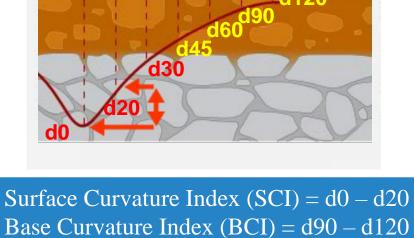


Statens vegvesen Norwegian Public Roads Administration

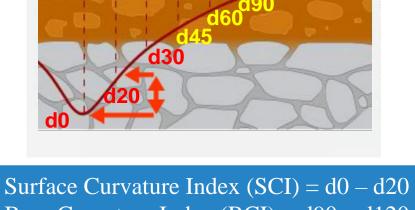
Improving bearing capacity assessment by applying temperature correction models

NADim 2022 Ali Mirhosseini, Statens vegvesen

Bearing capacity

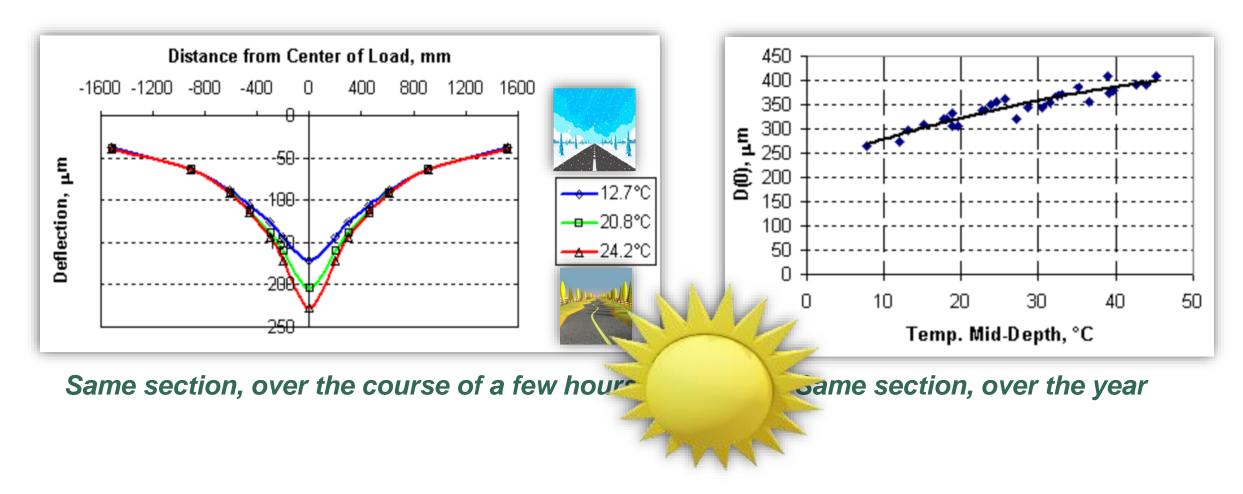

'The maximum axle load a road can handle over a period of time (the design period), while the condition of the road with normal maintenance does not fall below a defined acceptable limit (N200, Statens vegvesen).'

$$\mathbf{B} = 11 \cdot \left(\frac{E_{\text{dim}}}{200}\right)^{0.6} \cdot \left(\frac{50}{AADT_T}\right)^{0.072}$$

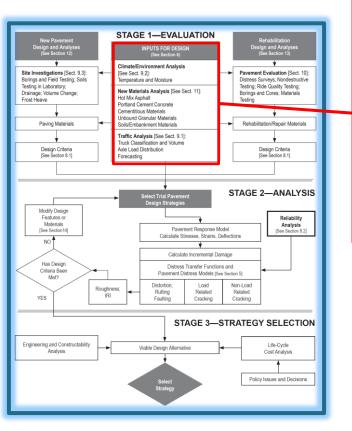

: bearing capacity (tons) В E_{dim} : design surface modulus (MPa) $AADT_T$: annual average daily traffic for heavy vehicles

$$E_{dim} = 110 \cdot \frac{p}{(\delta_0 \cdot (\delta_0 - \delta_{200}))^{0.5}}$$

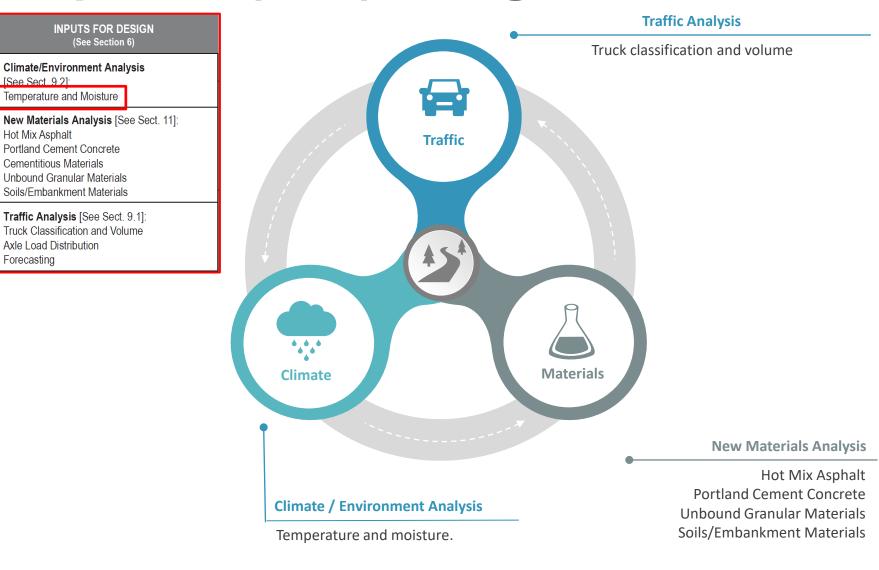
- : contact pressure (MPa) р
- : deflection at the load center (mm) δ_0
- : deflection 200 mm from the load center (mm) δ_{200}


FWD measurement

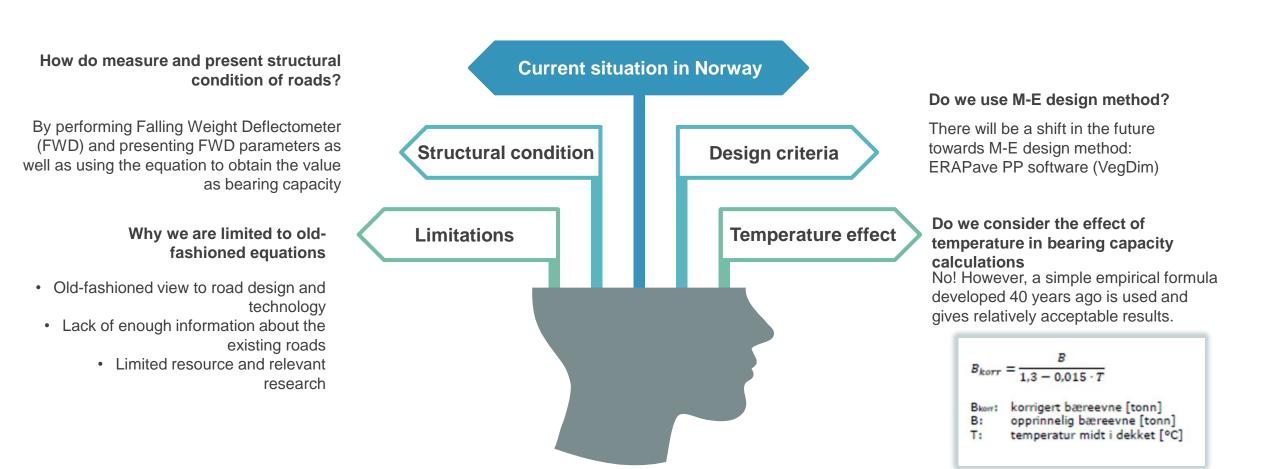
Why temperature?


CFHWA LTPP Guide to Asphalt Temperature Prediction and Correction (FHWA-RD-98-085)

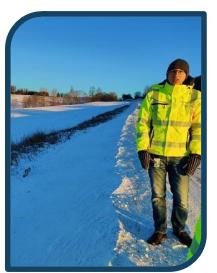
With the trend toward mechanistic-empirical design methods, methods to adjust the <u>pavement response for</u> <u>temperature</u> are needed (1993).



Mechanistic Empirical (M-E) design



Project research questions



The Project team

Per Otto Aursand

Trond Østen

Kim Rune Grannes

Sara Anastasio

Leif Bakløkk

Ali Mirhosseini

Review of the literature

Reviewing the relevant literature in Norway and around the world

Master thesis of Jørgen Sletten (Sp: Helge Mørk): 'Temperaturkorreksjon av nedbøyningsmålinger på vei'

2

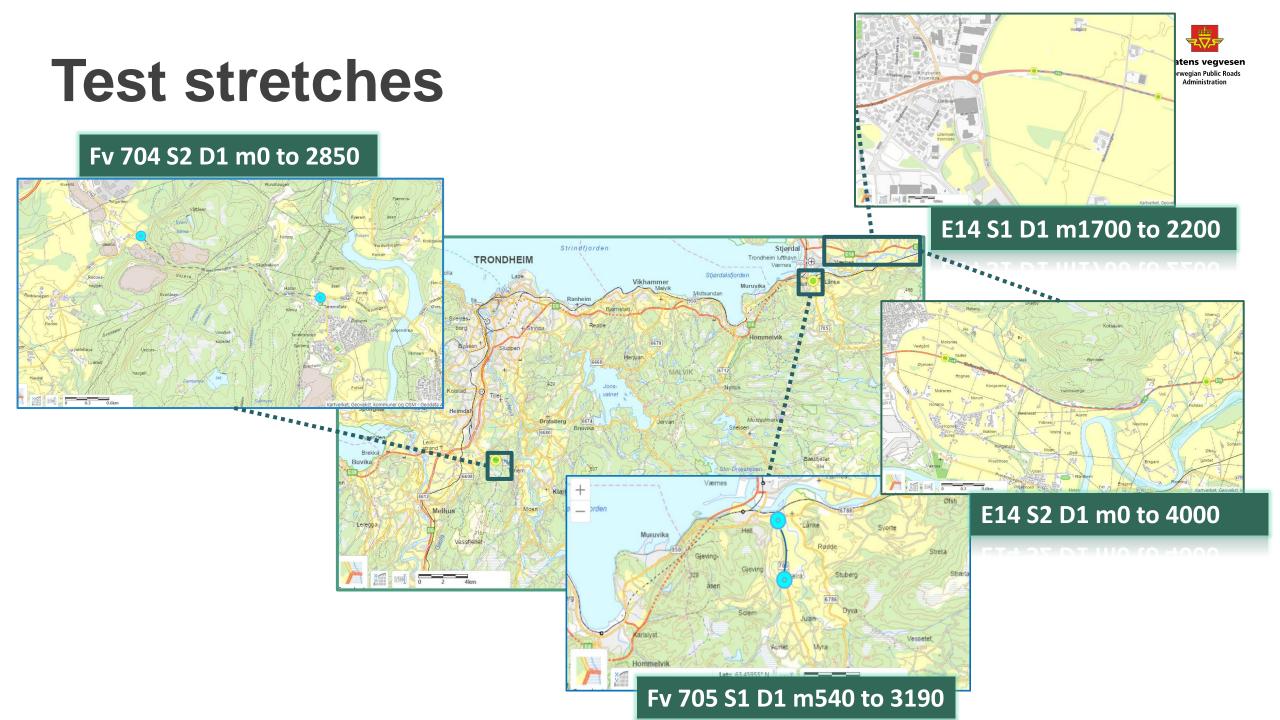
3

PhD thesis of Erling Sletten (developer of the bearing capacity formulas), 1982: 'Vegers Bæreevne'

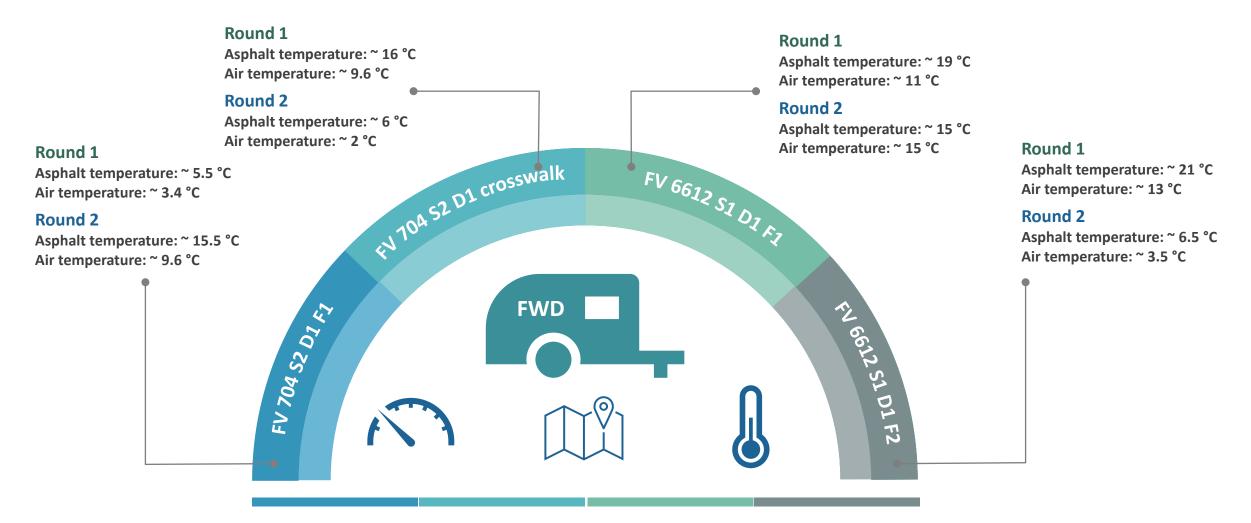
Possibilities for development of the current equations

Measurements with FWD, Raptor, and TSD

On four same stretches


Objectives:

- Validation and comparison of data, particularly with FWD
- Finding possible correlations based on the measurements
- Further analysis of additional data from Raptor



Measurements with FWD

Several times on the same stretches, different temperatures

Statens vegvesen

Norwegian Public Roads

Present data

Fv 6612 S1 D1 F1

DTemp[°C]	LTemp[°C]	
19.5	11.3	
19.6	11.3	
19.3	11.2	
18.9	11.1	
18.3	11.0	
18.6	10.9	
18.4	11.0	
18.4	11.1	
19.4	11.1	
20.0	11.2	
20.7	11.3	
20.1	11.5	
19.5	11.6	
19.2	11.6	
19.5	11.6	
19.0	11.6	

 DTemp[°C]
 LTemp[°C]

 5.5
 2.9

 5.6
 3.0

 5.7
 3.0

 5.6
 3.0

 5.4
 3.0

 5.5
 3.0

5.4

5.5

5.7

5.8 6.0

6.0

6.3 6.3

6.4

6.4

3.3

3.4

3.4 3.4

Round 1

Asphalt temperature: ~ 19 °C Air temperature: ~ 11 °C

			SCI			BCI						
				D0/(D0-			Styrke					
B	æreevne	D90	D0-D20	D20)	F-diff	D90-D120	bærelag	Styrke undergrunn/ forsterkningslag	Sannsynlig undergrunn	Største svakhet i	Undergrunnens E-mod	Tøyning underkant asfalt
	18.7	02.2	52.9	5.5	0.0	27.0	Meget God	God	Sand/grus	F/U	149.1	136.6
	19.2	93.2	51.4	5.4	0.0	24.5	Meget God	God	Sand/grus	F/U	163.4	136.9
	20.0	17.0	49.9	5.1	0.0	21.6	Meget God	God	Sand/grus	F/U	193.8	134.8
	20.6	90.8	42.4	6.2	0.0	26.3	Meget God	God	Sand/grus	F/U	166.8	124.6
	19.2	93.9	50.0	5.8	0.0	27.6	Meget God	God	Sand/grus	F/U	155.0	133.6
	20.4	106	41.0	7.1	0.0		Meget God		Sand/grus	F/U	143.1	124.0
	21.0	7(.8	45.7	5.1	0.0	17.1	Meget God	Meget god	Sandyrus	F/U	209.2	125.6
	21.3	65.8	43.3	5.4	0.0	21.0	Meget God	Guu	Sand/grus	F/U	211.3	123.2
	20.8	117	38.1	7.6	0.0	32.9	Meget God	God	Sand/grus	F/U	135.9	116.2
	18.9	11).3	48.3	6.4	0.0	31.4	Meget God	God	Sand/grus	F/U	140.4	135.5
	21.0	110.0	38.9	7.0	0.0	28.4	Meget God	God	Sand/grus	F/U	140.2	113.2
	19.8	5.5	50.9	5.0	0.0	21.1	Meget God	God	Sand/grus	B/F	197.0	135.9
	17.2	94.3	66.6	4.7	0.0	26.4	Meget God	God	Sand/grus	B/F	161.3	156.8
	16.1	100.2	71.6	5.1	0.0	23.0	Meget God	God	Sand/grus	F/U	153.4	180.9
X	15.2	126.2	71.3	6.2	0.0	36.5	Meget God	God	Sand/grus	F/U	124.6	198.4
	17.4	105.3	56.3	6.2	0.0	30.5	Meget God	God	Sand/grus	F/U	146.3	165.9

Round 2

Asphalt temperature: ~ 15 °C Air temperature: ~ 15 °C

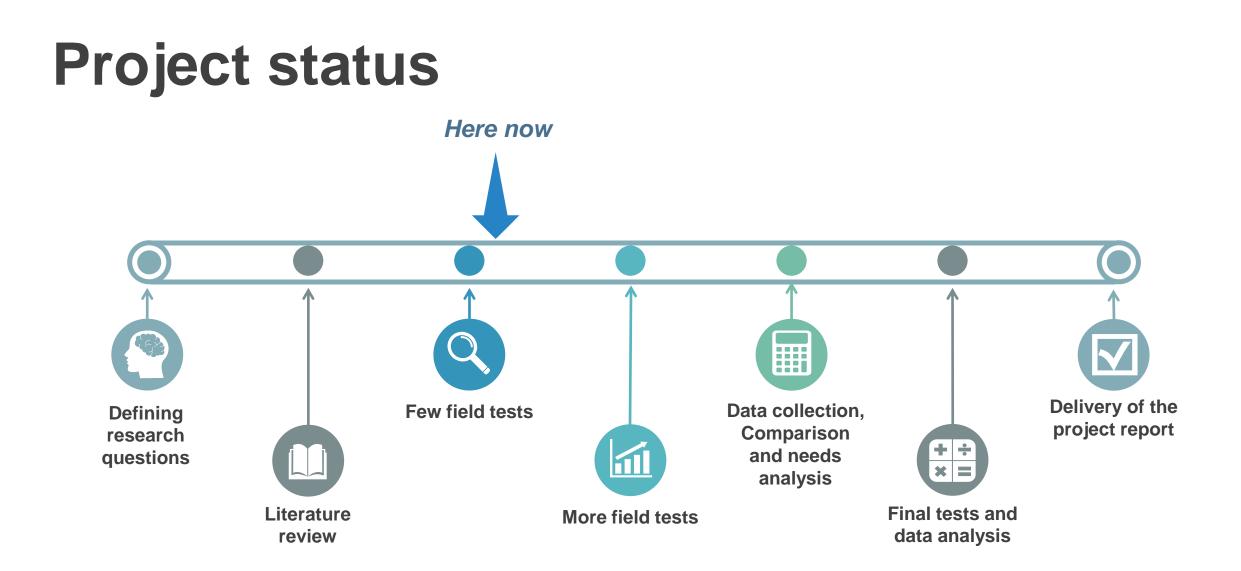
E			SCI	1		BCI						
H			501			всі						
	\frown			D0/(D0-			Styrke					
	Bæreevne	D90	D0-D20	D20)	F-diff	D90-D120	bærelag	Styrke undergrunn/ forsterkningslag	Sannsynlig undergrunn	Største svakhet i	Undergrunnens E-mod	Tøyning underkant asfalt
Λ	24.3	104.9	32.3	7.8	0.0	26.4	Meget God	God	Sand/grus	F/U	146.6	107.0
/	24.5	95.2	32.2	7.7	0.0	21.9	Meget God	God	Sand/grus	F/U	159.9	110.2
1	22.9	7.6	40.6	6.1	0.0	26.5	Meget God	God	Sand/grus	F/U	172.7	111.2
	25.7	§0.5	30.2	7.5	0.0	23.5	Meget God	God	Sand/grus	F/U	167.5	98.5
	24.7	101.7	31.2	8.0	0.0	26.6	Meget God	God	Sand/grus	F/U	150.8	103.5
	25.4	10.2.9	28.4	8.8	0.0		Meget God		Sand/grus	F/U	149.2	100.1
	27.5	70.4	28.4	6.8	0.0	19.9	Megst God	Meget god	Sapu/grus	F/U	210.3	96.8
	26.5	72.6	30.1	6.8	0.0	21.5	Meget God		Sand/grus	F/U	204.3	101.2
	26.6	10!.3	25.2	9.5	0.0	29.7	Meget God	God	Sand/grus	F/U	141.2	89.8
	24.3	115.4	30.6	8.8	0.0	36.8	Meget God	God	Sand/grus	F/U	134.8	104.3
	27.5	105.0	23.9	9.5	0.0		Meget Ged		Sand/grus	F/U	146.3	88.2
	26.5	74.7	30.6	6.6	0.0	16.5	Megst God	Meget god	Sand/grus	F/U	199.1	99.4
	21.6	3.4	44.1	6.3	0.0	26.4	Meget God	Goa	Sand/grus	F/U	163.1	131.8
	19.5	102.0	51.6	6.5	0.0	29.1	Meget God		Sand/grus	F/U	150.9	157.0
\mathbf{V}	17.2	30.7	63.0	6.5	0.0	33.7	Meget God	God	Sand/grus	F/U	120.5	177.4
	19.8	104.2	49.7	6.5	0.0	28.3	Meget God	God	Sand/grus	F/U	147.5	150.2

Present data

Statens vegvesen Norwegian Public Roads Administration

Possibilities for development

Use of temperature prediction models (e.g., BELLS), correlation analysis, calibrating based on Norwegian data Carrying out core drilling to determine pavement information (e.g., layers thickness) to include E-modulus in estimation and consequently performing backcalculation analysis


> Use of backcalculation, determining deflection factors, calculating Emodulus, and calibrating

Statens vegveser Norwegian Public Roads

Calibrating the formulas that we currently have based on available and more measurements

Practical / national level ?

Project level

Limitations / risk factors

GREENWOOD TSD

Statens vegvesen

262523

Statens vegvesen

Norwegian Public Road

P. Rithings

And in case of the local division of the loc