Permanent deformation and Fatigue damages of Asphalt Concrete

Mequanent Mulugeta Alamnie PhD Student

UiA University of Agder

BACKGROUND

- Asphalt concrete is a fundamental pavement material
- Heterogeneous, thermo-piezo-rheological material
- The main objective of asphalt concrete design and service life prediction is to estimate the critical or flow strain (\mathcal{E}_c) and the number of cycles (N_f) to initiate fatigue cracking.
- Permanent deformation (rutting) & fatigue cracking are the primary damage modes.

Domains of behavior

BACKGROUND

- The tradition design criteria were the critical tensile strain at bottom of AC layer and vertical stress or strain on top of subgrade
- Top-down cracking due to shear stress is not incorporated

BACKGROUND

- Existing design methods considered the two damages independently.
- Permanent deformation and fatigue cracking happened concurrently by the same load on the field.
- Independent treatment of the two damages has limitations for the mechanistic pavement design (far from the actual condition).
- The damage characterization and modeling is still not well studied
- Damage modeling can be unified or coupled for a balanced pavement design, performance prediction.

1/12/2022

PRIMARY PAVEMENT DAMAGES - EU

Source: Main road deterioration (COST Project (European Commission, 1999))

Main Damages Norway:

- Rutting (in asphalt layers, subgrade, Studded tyres wear)
- Longitudinal unevenness
- Frost heave

Sweden:

- Rutting (in asphalt layers, subgrade, Studded tyres wear)
- Cracking initiated at the surface
- General surface cracking
- Longitudinal Cracking in wheelpath
- Cracks at bottom of base course
- Frost heave

MAIN SOURCES OF RUTTING DAMAGE

Mode 2: Rutting from weak subgrade

Mode 3: Rutting caused mainly by studded tire wear

NEAR SURFACE STRESS DISTRIBUTION AND DAMAGE

Tires - pavement bending to near-surface transvers stress distribution

- Sharp shear stresses are causes of surface cracks.
- Rutting (mainly mode 1 and 2) accompanied cracking

UiA University

ASPHALT CONCRETE DAMAGES

Permanent deformation

 Creep-recovery involves hardening-relaxation and viscous flow over number of cycles

Fatigue cracking

 Tension-Compression or T-T loads cause stiffness deterioration, exhaustion, and cracking

ENERGY APPROACH

Damage evolves energy dissipation (as heat, viscoplastic flow, crack initiation, etc.)

Dissipated energy (DE) is the area under the stressstrain hysteresis loop.

$$DE = \int_{0}^{\tau} \sigma(t) \frac{\partial \varepsilon(\tau)}{\partial \tau} d\tau$$

- The DE for a strain-controlled fatigue test with sinusoidal strain wave, $DE_F = \pi E_i^* \varepsilon_i^2 \sin(\varphi_i)$
- DE for a creep-recovery permanent deformation,

$$DE_{PD} = \sigma_o * \varepsilon_{vp}$$

Dissipated energy ratio (DER):

- Definition; $DER = n \times \frac{DE_1}{DE_n}$
- For creep-recovery,

$$DER_{PD} = n\left(\frac{k}{\varepsilon_{vp}}\right)$$

Cyclic fatigue,

$$DER = \left(\frac{n}{E^*_n}\right) \left(\frac{E^*_1 \sin \varphi_1}{\sin \varphi_n}\right) = n \left(\frac{E^*_1}{E^*_n}\right) \left(\frac{\varphi_1}{\varphi_n}\right)$$

1/12/2022

CONTINUUM DAMAGE APPROACH

- Continuum mechanics interpreted damage as reduction of effect area of material.
- A damage variable, $\omega \in [0,1)$ can be defined as;

 The total damage due to creep and fatigue can be expressed as follow.

$$d\omega = d\omega_f + d\omega_c$$

$$\omega = \int_0^{N_c} \frac{\partial \omega_c}{\partial N} \partial N + \int_0^{N_f} \frac{\partial \omega_f}{\partial N} \partial N$$

 Analytical Creep-fatigue interaction model like,

$$\frac{\omega_f}{1-I_{cf}\omega_c} + \frac{\omega_c}{1-I_{fc}\omega_f} = 1$$

 I_{cf} and I_{fc} are interaction coefficients.

VISCOELASTIC CONTINUUM DAMAGE MODEL

 Schapery's Viscoelastic Continuum damage (VECD) model (<u>Schapery, 1990</u>)

 $\frac{dS}{dt} = \left(-\frac{\partial W^R}{\partial S}\right)^{\alpha}$

- Pseudo strain energy, $W^R = \frac{1}{2}\sigma\varepsilon_i^R$
- Pseudo strain, $\varepsilon_i^R = \frac{1}{E_R} \int_0^t E(t-\tau) \frac{d\varepsilon}{d\tau} d\tau$
- Pseudo stiffness, $C = \frac{\sigma(t)}{\varepsilon_i^R}$
- Accumulated damage after one load cycle,

$$\Delta S = \left[-\frac{DMR}{2} \left(\varepsilon_{a,i}^R \right)^2 \left(C_i^* - C_{i+1}^* \right) \right]^{\frac{\alpha}{1+\alpha}} (\Delta t_R)^{\frac{1}{1+\alpha}}$$

 $C=1-aS^b$

a, b – constants

1/12/2022

CI UIA University of Agder

MATERIAL, SAMPLE PREPARATION

mixtures were also used.

CI UIA University of Agder

TESTING FACILITIES

Universal testing machine (UTM-130)

Environmental Chamber (-50 to +80)

Tests conducted;

- Dynamic Modulus test (frequency sweep)
- Creep-recovery (uniaxial / triaxial)
- Uniaxial fatigue test (tensioncompression or tension-tension)

TEST METHODS

Parameters for dynamic modulus, uniaxial fatigue and creep-recovery tests

Dynamic modulus test conditions – undamaged test

Temperature (oC)	Frequency (Hz)	Confining pressure (kPa)	Control-Strain (με)
-10, 5, 21, 40, 55	25, 10, 5, 2, 1, 0.5, 0.2, 0.1	0, 10, 100, 200, 300	50

Uniaxial Fatigue test conditions

Temperature (°C)	Frequency (Hz)	Target strain (με)	Mode
10,15, 21, 30	10	100, 150, 200, 300, 400	T-C, T-T

Repeated Creep-recovery test conditions

Temperature (oC)	Loading time (sec)	Confining pressure (kPa)	Stress (MPa)
30, 40, 50	0.1, 0.4, 1, 1.6	0, 50, 100, 150, 200	0.5 to 2

TEST METHODS

Sequential test Approach for damage characterization

- 1. Creep recovery followed by uniaxial fatigue test
- 2. Uniaxial Fatigue test followed by Creep-recovery test

RESULTS – DYNAMIC MODULUS TEST

Linear Viscoelastic properties

- Dynamic modulus (E*), Relaxation Modulus E(t)
- Time-Temperature Superposition Principle
- The Prony series
- Maximum slope of E(t) t curve:
- viscoelastic damage parameter, α

$$E(t) = E_{\infty} + \sum_{m=1}^{M} E_m \left(e^{\left(-t/\rho_m\right)} \right)$$
$$S_o = \max \left\{ \frac{\Delta \log(E(t))}{\Delta \log(t)} \right\} \qquad \alpha = \frac{1}{S_o} - \frac{1}{S_o} + \frac{1}{S_o} \right\}$$

RESULTS – CREEP-RECOVERY TESTS

Permanent deformation evolution

- Flow Number or Flow Time (based on strain rate) is the classic criterion for creep damage.
 - Micro-cracks initiate, shear failure at constant volume starts
- Alternatively, the Dissipated Energy Ratio (DER) criterion gives more comprehensive creep phases $DER = N \left(\frac{DE_1}{DE_n}\right)$
- Using E.g. Francken model (Francken, 1977)

$$\varepsilon_{\rm vp} = AN^{\rm B} + C(e^{\rm DN} - 1) \qquad \varepsilon_{\rm vp}^{\cdot} = ABN^{\rm B-1} + CDe^{\rm DN}$$
$$DER = N\left(\frac{\kappa}{\varepsilon_{\rm vp}}\right) \qquad K = A + C(e^{\rm D} - 1)$$

 The Peak Value (PV) marks the beginning of macro-crack or excessive deformation.

Four phases of creep using DER Curve

RESULTS – CREEP-RECOVERY TESTS

Permanent deformation evolution

 The number of cycles between micro crack initiation (FN) and macro-crack formation (Npv) is the endurance limit (NR).

80 70 PV 60 **DER** (-) 50 FN 40 30 20 10 0 2 3 Strain (%) 4 5 0 1

NR is the remaining life

- Before macro-cracks
- Grace period until resurfacing

 $NR = N_{PV} - FN$

RESULTS

Fatigue damage evolution

• The classic model for fatigue life

- DER for fatigue
 - Effect of Target strain amplitude

19

2.4

2

F – **C SEQUENCE**

Effect of Pre-fatigue on permanent deformation

- The PD part of the test is performed well with in the secondary creep stage (before FN)
- The effect of about 40% fatigue damage on PD was marginal.
- This can be because of healing during conditioning time
- The effect on Flow number is not consistent.
- F-C sequence may not be the common damage formation

-H-S5-F150

H-S7-F400

Example: Effect of fatigue cracking on PD (SMA11-L)

F-C SEQUENCE

Effect of pre-fatigue cracking on Permanent deformation evolution;

Effect of strain amplitude flow number

E.g. Fatigue at 10oC, PD at 40°C, $\sigma = 0.65$ MPa

E.g. F at 10oC, PD at 30°C, $\sigma = 2MPa$

21

C-F SEQUENCE

Effect of strain hardening on fatigue response

- The PD part of the test is performed well with in the secondary creep stage (before FN)
- Strain hardening accelerate fatigue damage

CREEP AND FATIGUE DAMAGES

The continuum-based damage modeling

F15 -300 means 15 °C and at 300 micro-strain)

CONCLUSION

- From the experimental investigation, the effect of pre-fatigue on permanent deformation, and effect of pre-deformation on fatigue damage are critical.
- It is necessary to investigate these damage sequences for 'balanced' performance prediction.
- The C-F sequence is believed to the most realistic pavement damage sequence. The study showed significant effect of strain hardening on fatigue cracking damage.
- Both energy approach and continuum method can be used for damage modeling. The continuum approach is more natural way.
- The sequential test procedure (STP) and energy approach is simple to evaluate the interaction between F and PD.

 Further research, fatigue and permanent deformation damage interaction, prediction and modeling (similar to Balanced mix design)

1/12/2022

Acknowledgement

Norwegian University of Science and Technology

1/12/2022

Thank you for you attention!

7

