

# Heavy Duty Asphalt Concepts

based on FT-Wax Modification



# **Examples for heavy duty pavements**

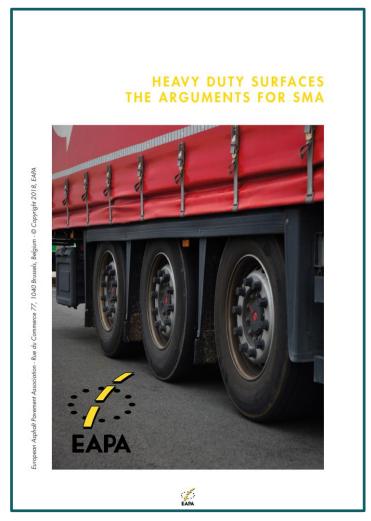


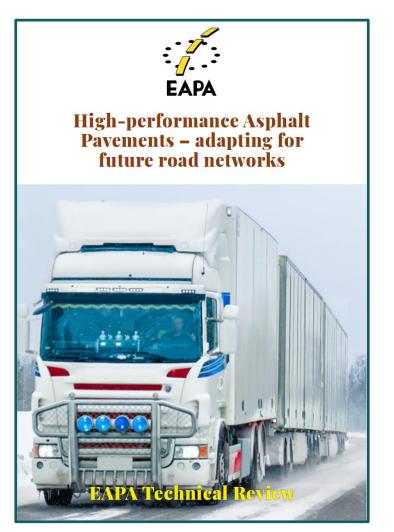
Aviation surfaces



Logistic areas / bus terminals







# **Situation analysis**

- > The need for heavy duty pavements can mostly be traced back to the following factors:
  - High percentage of aircraft/truck/bus traffic
  - Heavy-weight vehicles high tire pressure
  - Heavy traffic
  - Maneuvering in narrow curves
- > These factors lead to high static and dynamic loads which must be considered when designing the asphalt.
- Standard asphalt mixes may have a short durability due to rutting, deformations and fatigue-cracks.



#### **Technical Documents**





**Source: EAPA Home Page** 

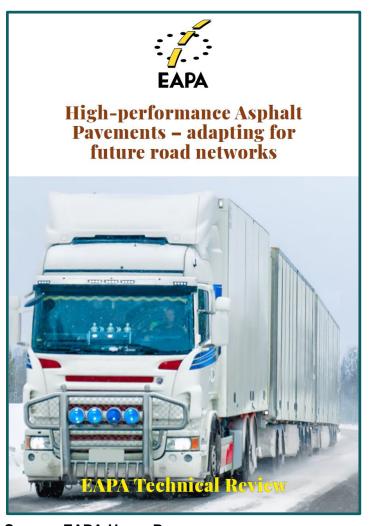


#### **Technical Documents**



#### 3.2 High-performance surface courses

The highest stability and durability in surface courses are obtained when Stone Mastic Asphalt (SMA) is used


#### 3.3 High-performance binder courses

Depending on the structure of the pavement, highperformance binder courses can be also obtained by replacing conventional asphalt mixtures, e.g., asphalt concrete by SMA.

Source: EAPA Home Page



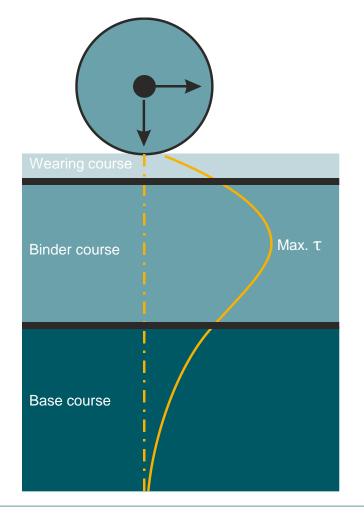
#### **Technical Documents**



# 3.5 New concepts for pavement structures

A further evolution of previous points consists of substituting the traditional structure (surface-binder-base course) by a triple SMA layer made with highly polymer-modified bitumens (e.g., PMB 45/80-80 and 25/55-80)




Triple-SMA pavement structure configuration

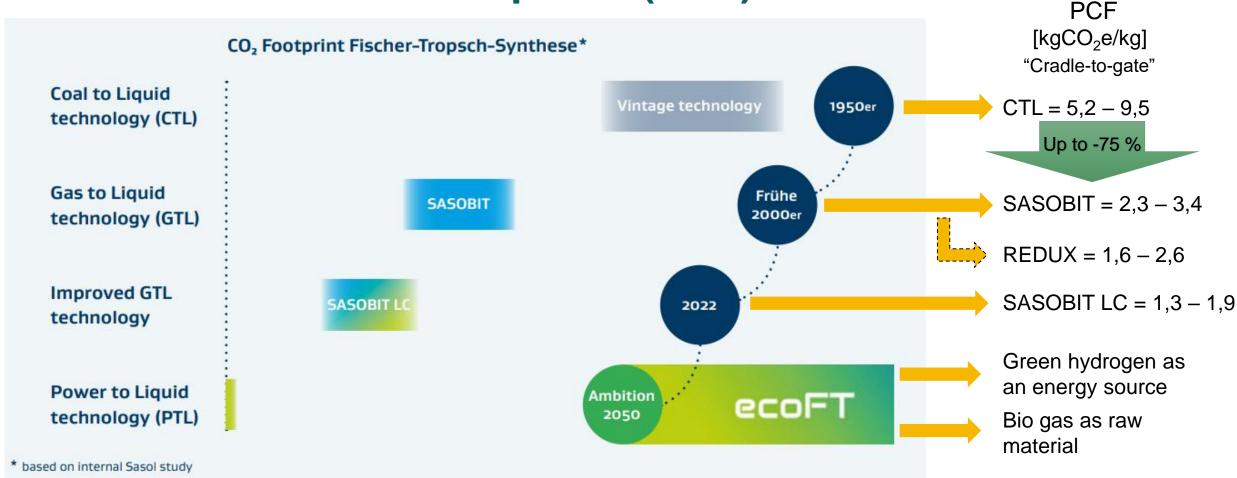
Source: EAPA Home Page



## **Situation analysis**

- > Binder courses (mainly) absorb the shear stress.
- More investment in the binder course will most probably ensure a higher durability of the road.
- However, the design of the binder course must be harmonized with wearing and base course.





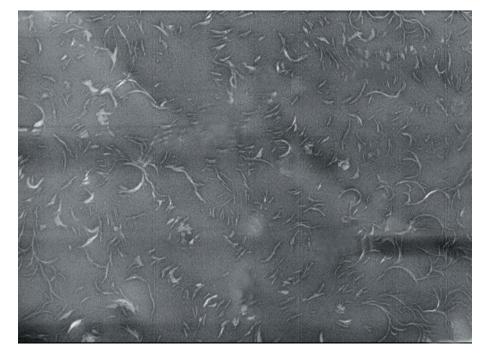

## Requirements for heavy duty asphalt pavements

- > To provide durable asphalt pavement in spite of high loads, following measures shall be considered:
  - Use hard, ideally polymer modified binders
  - Ensure optimal compaction by temperature increase
  - Increase binder content
  - Increase the course thicknesses
  - Test asphalt pavements in performance tests like e.g. Wheel-Tracking-Test
- > How does FT-wax modification impact asphalt pavement's suitability for heavy duty applications?



# **Product Carbon Footprints (PCF)**



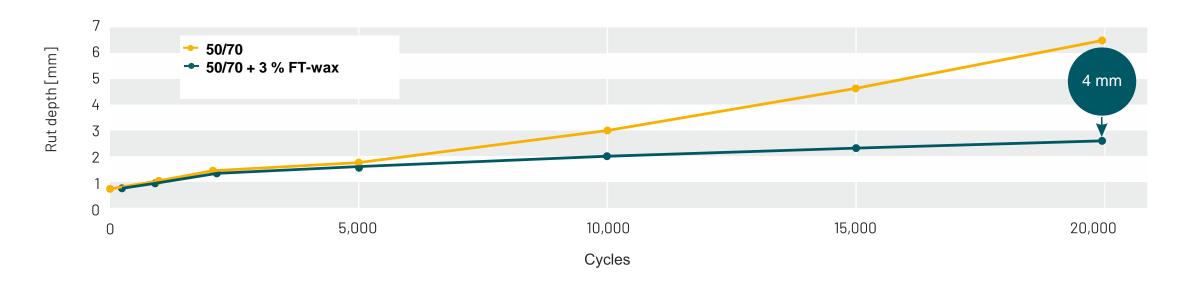

Sasol produces in specialized FT refineries in South Africa. Transport is carried out by container ships from Durban to Hamburg, releasing an additional 0.1247 kgCO2e/kg [1 a, 1 b]. In comparison: Hamburg – Munich = 0,0535 kgCO<sub>2</sub>e/kg



- > FT-wax has an increasing effect on Softening Point R&B and a decreasing effect on Needle Penetration at 25 °C.
- The higher the FT-wax content the stronger the stiffening effect.
- > In practice a dosage of 2,5 4,0 % FT-wax by binder content have proven for heavy duty applications.



- > During cooling phase FT-wax starts to crystallize at 90 °C and forms a lattice structure in the bitumen.
- > This lattice structure has a stiffening effect.
- > The stiffening effect significantly improves the resistance to permanent deformation at higher temperatures.




REM picture of 50/70 + 4.0 M.-% FT-wax

> FT-wax improves binder's suitability for the use in heavy duty applications.

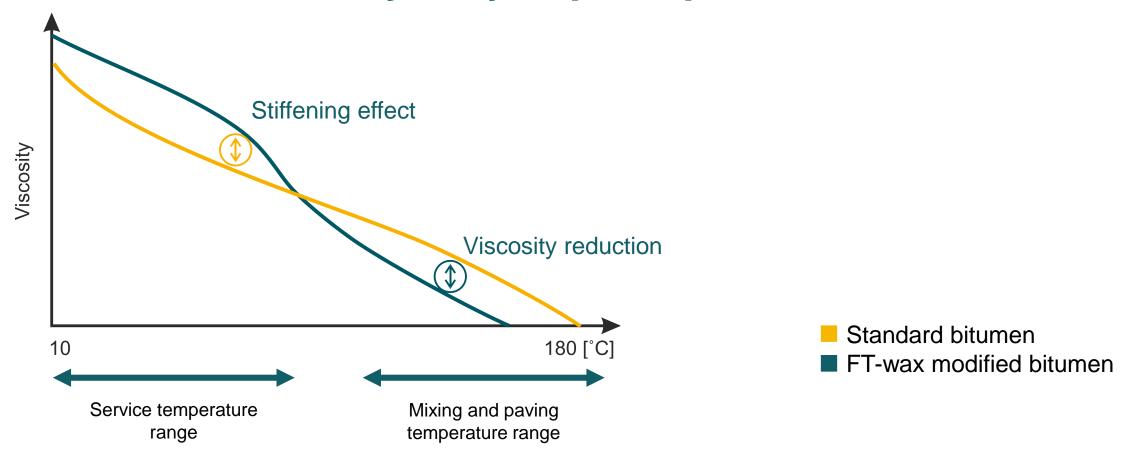


#### Wheel-Tracking-Test SMA 11 S\*



\*Steel wheel in water bath at 50° C



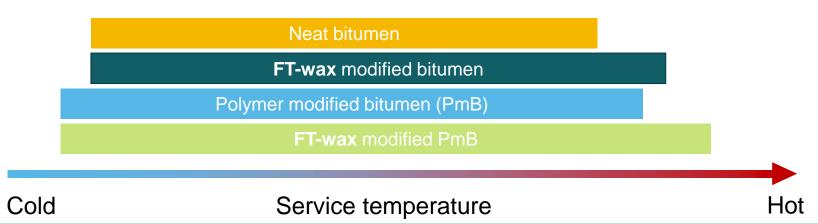

#### > PmB have proven well for heavy duty applications:

- Deformation resistance.
- Fatigue resistance.
- Cold temperature resistance.

#### > Challenges of polymer modified pavements:

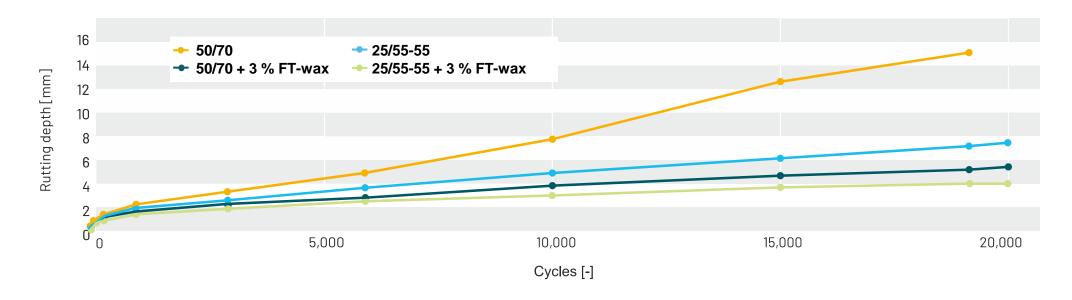
- Higher temperatures are necessary to ensure good workability and compaction.
- Consequences: binder ageing, additional costs, higher emissions, impairing polymer properties.






> The viscosity reducing effect of FT-wax modification can be used to overcome the challenges of polymer modified binders during mixing and paving.




- > The combination of FT-wax and PmB represents a superior binder concept:
  - ✓ Viscosity reducing effect of FT-wax ensures optimal workability.
  - ✓ Viscosity reducing effect of FT-wax allows for avoiding increase of temperature.
  - ✓ Stiffening effect of FT-wax enhances deformation resistance even more.
  - ✓ Low temperature performance is not impaired by FT-wax but improved by polymers.

#### Qualitative change of plasticity range caused by modification:

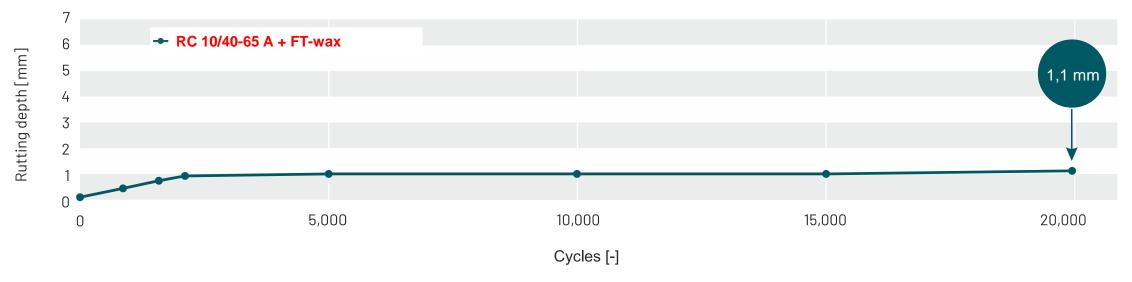




Hamburg Wheel-Tracking-Test, Steel wheel, water bath 50 °C, SMA 8 S



- > FT-wax modified bitumen performs better than PmB.
- > FT-wax modified PmB provides the best performance.


|           | Binder                             | Rutting depth* [mm] |
|-----------|------------------------------------|---------------------|
| AC 16 B S | 10/40-65 A                         | 2,4                 |
|           | 25/55-55 A RC + 3 M% <b>FT-wax</b> | 2,1                 |
| SMA 8 S   | 25/55-55 A                         | 4,5                 |
|           | 25/55-55 A RC + 3 M% <b>FT-wax</b> | 2,3                 |

<sup>\*</sup>Steel wheel in water bath at 50° C

- Core samples were taken out of a road and were tested in Hamburg Wheel Tracking-Test.
- > The softer 25/55-55 A RC + FT-wax shows a better performance than the harder 10/40-65 A.
- > The deformation resistance of 25/55-55 A RC + FT-wax shows a significant advantage in comparison to 25/55-55 A.

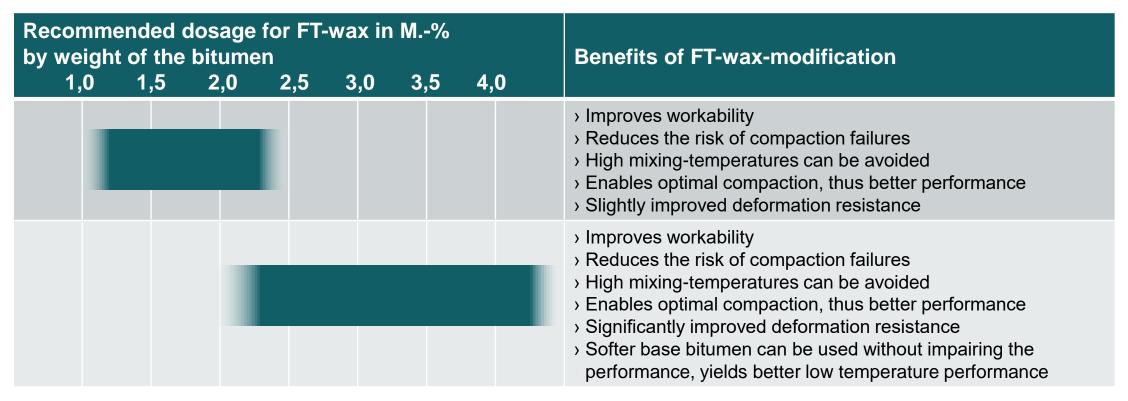


Hamburg Wheel-Tracking-Test, steel wheel, waterbath at 60 °C, AC 16 B S



> Extraordinary results of FT-wax modified binders in Wheel-Tracking-Test; even at 60 °C.




#### Conclusion

> The use of FT-wax is a proven, cost-effective and superior alternative to conventional asphalt mixes that enable heavy duty pavements.

| Conventional measure                              | FT-wax alternative                                                                                | Benefits of FT-wax alternative                                                                                                                                  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use of hard binders/PmB                           | FT-wax modified bitumen/PmB provide a comparable or even better performance in rutting resistance | <ul> <li>✓ Good workability and high<br/>rutting resistance</li> <li>✓ Production of FT-wax<br/>modified bitumen can be<br/>done at the mixing plant</li> </ul> |
| Ensure optimal compaction by temperature increase | FT-wax improves workability without temperature increase                                          | <ul><li>✓ Less ageing</li><li>✓ Extended service life</li><li>✓ No additional costs for energy</li></ul>                                                        |
| Increase binder content/course thickness          | FT-wax improves deformation resistance as well as workability                                     | ✓ No additional costs for raw material and handling                                                                                                             |



#### Conclusion





Generally the base bitumen grade must be carefully chosen with regard to the climate conditions, mostly the frost zone. As **FT-wax** improves the deformation resistance the plasticity range is extended and therefore the service temperature interval is enlarged.



# How to modify?

> Terminal blended binder





# How to modify?

#### > At the mixing plant

- Pure FT-wax
  - Bitumen scales
  - Bitumen stream
  - Melting device
  - Pug mill





# How to modify?

#### > At the mixing plant

- FT-wax/fiber pellet
  - Fiber dosing unit

#### VIATOP plus WMA

- VIATOP plus C 25
- VIATOP plus CT 40
- VIATOP plus CT 80-AC





# Case studies – examples

#### > Airports

- Frankfurt International Airport 2004 2017
- Hamburg Airport 2001 & 2003
- Airport Berlin Brandenburg 2004
- Airbus Factory Runway Hamburg
   Finkenwerder 2003
- Svalbard Airport Longyearbyen 2006
- Summary

#### > Container Terminals

- Hamburg Tollerort
- Hamburg Eurogate
- Hamburg HHLA Burchardkai
- Summary

#### > Bus terminals/lanes

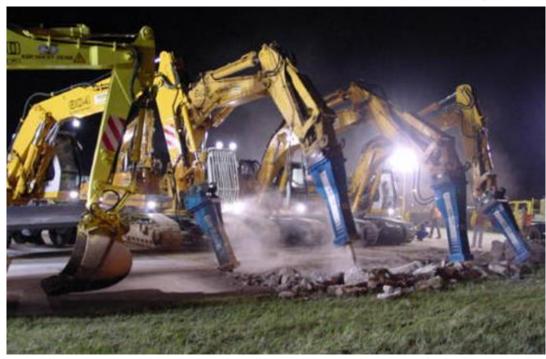
Remmscheid



# Case studies – Frankfurt International Airport – 2004 - 2017

- Since 2004 runways were renewed according following procedure:
- The old concrete runway had to be removed and replaced by asphalt mix in very short time slots.
- Works were only possible during the night flight ban between 10:30 pm and 6:00 am.
- > Time slot of 7 ½ hours for demolition of the concrete and paving the asphalt mix.
- First plane landed directly after the end of the working time slot.
- Delays would have caused major delays in the European air traffic.








# Case studies – Frankfurt International Airport – 2004 - 2017

- Renovation of Runway North, Sectors 1 & 2.
- > Size of project approx. 100.000 m<sup>2</sup>.
- > Tonnage approx. 1.500 to/nightshift.
- > Asphalt construction:
  - 24 cm AC 32 T S, 30/45 + 4 %FT-wax + fibers
  - 24 cm AC 32 T S, 10/40-65 A + 4 %
     FT-wax + fibers
  - 12 cm AC 22 B S, 10/40-65 A + 4 %
     FT-wax + fibers
  - After approx. 150 m of runway are finished 4 cm are milled off and are replaced with:
  - 4 cm SMA 11 S, 25/55-55 A + 4 %
    FT-wax + fibers





# **Case studies – Hamburg International Airport**

#### > First runway in 2001.

#### > Second runway in 2003.

- Both cases: tender requests the renovation of binder and wearing course.
- Hamburg is situated in a very wet climate, frequent freeze/thaw cycles and heavy use of de-icing fluids.
- A very dense and deformation resistant asphalt mix is necessary.
- FT-wax enables higher compaction rates and therefore ensures the fulfilment of the high requirements.





# **Case studies – Hamburg International Airport**

- > Project size 65.000 m<sup>2</sup>; 6.670 t
- > Asphalt construction
  - 4 cm, **SMA 11 S** wearing course
  - Binder: **50/70 + 3,0 M.-% FT-wax** 
    - Softening Point R&B: 82 °C
    - Binder content in the mix: 7,0 %
    - Mixing temperature: 150 160 °C
    - Paving temperature: 140 150 °C
- > Asphalt test results
  - Void content: 3,3 %
  - Wheel tracking test (steel wheel, water bath
     © 50 °C, 20.000 cycles): 3,2 mm





# Case studies – Airport Berlin Brandenburg

- > Schönefeld runway 07R/25L in 2004.
- > Project size: 135.000 m<sup>2</sup>, approx. 45.000 t hot mix.
- > Asphalt construction:
  - Subgrade: old base course.
  - Binder course: 12 cm AC 16 B S + 0,2 % fibers, paved in two layers.
  - Binder: 25/55-55 A + 3 M.-% FT-wax.
  - Surface course: 3 mm antiskid-coating.
- > Purpose of using FT-wax:
  - Significantly improved deformation resistance.
  - Good workability despite ambient temperatures of -2 °C.
  - Ensure optimal compaction.





# Case studies – Airbus factory runway Hamburg Finkenwerder

- > Airbus had to renew their runway because of the delivery of the A 380.
- > No taxi system, the planes need to turn on the runway as well.
- > The turning area needs a special asphalt mix design because of the high shear forces. Those are caused by 180° turns on a small diameter.
- > Purpose of using FT-wax:
  - Significantly improved deformation resistance.
  - Optimal compaction to ensure very dense asphalt mixes especially in the turning area.



# Case studies – Airbus factory runway Hamburg Finkenwerder

- > Subgrade: concrete slabs.
- > Concrete slabs are covered by asphalt mix, joints were cut and cuts were resealed with flexible mastic.
- > Asphalt construction for the runway:
  - Overlay: 5 cm AC 11 D S
  - Binder: 25/55-55 A + 2,5 M.-% FT-wax + adhesion promoter + 0,2 % fibers



# Case studies – Airbus factory runway Hamburg Finkenwerder

#### > Asphalt construction for the turning area:

- Overlay: 5 cm AC 11 D S.
- Binder: Endura Z2 (incl. FT-wax) + 0,2 % fibers.
- Binder content: 6,4 M.-%.

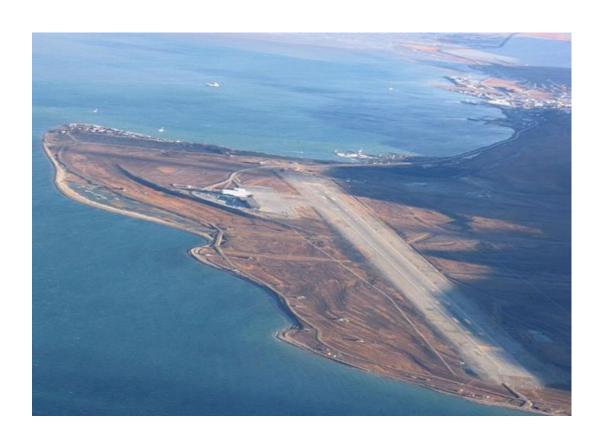
#### Asphalt test results turning area:

Hamburg Wheel-Tracking-Test, water bath @
 50 °C, 20.000 wheel passes: 2,43 mm





# Case studies – Svalbard Airport Longyearbyen


- > The airport is situated on the island Svalbard.
- > Climate conditions are very special:
  - Average temperature winter: -14 °C
  - Average temperature summer: +6 °C
  - Annual average temperature: -7 °C
  - Maximum temperature (1979): +21 °C
  - Minimum temperature (1986) -46 °C
  - Temperature drops/increases of 15 K or more can happen within a few hours.



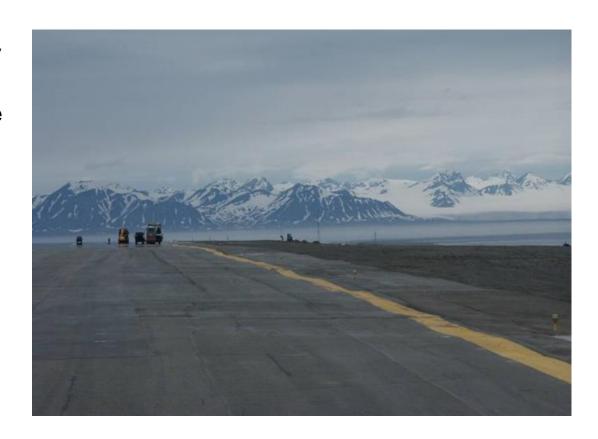


#### Case studies – Svalbard Airport Longyearbyen

- > Renovation of the runway in 2006.
- Main challenges:
  - Low temperatures while paving and production.
  - Fast winds.
  - Wide service temperature range:
    - Very low temperatures in the winter.
    - Eternal sunshine in the summer.
  - High deformation resistance due to the heavy load caused by planes.






## Case studies – Svalbard Airport Longyearbyen

#### > Choice of the binder:

- No use of SBS modified bitumen because these binders are difficult to process, especially under the given circumstances.
- Usage of very soft bitumen (Pen 430) to ensure low temperature performance.

#### > Purpose of using FT-wax:

- Extending the service temperature range by improving the deformation resistance at high temperatures.
- Providing process reliability with regards to the severe weather conditions.





# **Case studies airport - summary**

- > Airport projects generally need special asphalt mix design because of the following requirements:
  - ✓ Tight timeline must be met.
  - ✓ Process reliability is essential.
  - ✓ Heavy loads demand for a high performance and optimal compaction.
- > FT-wax helps to meet these special requirements for airport pavements, this has been shown in various projects all over the world!



## Case studies – container terminal Hamburg-Tollerort

#### > Size:

- 377.000 m<sup>2</sup> in 2004, 600.000 m<sup>2</sup> nowadays
- 950.000 TEU/p.a.
- > 70.000 m<sup>2</sup> were built in 2004.
- > **Subgrade:** Reclaimed ground/sand with a compacted layer of 32 mm gravel on top.
- > Asphalt mix construction:
  - Binder course: 8 cm AC 16 B S with 10/40-65 A
     RC + 4,0 M.-% FT-wax.
  - Surface course: 6 cm SMA 16 with Nynas Endura Z2 (incl. FT-wax).





## Case studies – container terminal Hamburg-Tollerort







## Case studies – container terminal Eurogate Hamburg

#### Size

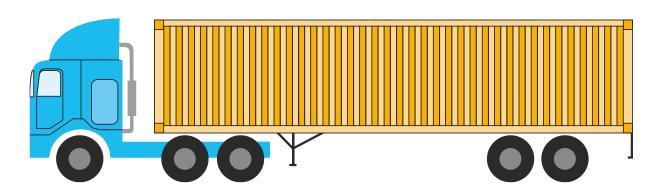
- 1,7 Mio m<sup>2</sup> (2010), 2,1 Mio TEU/p.a.
- 50.000 m<sup>2</sup> were built in summer 2005.
- Subgrade: Sand (well settled) with a compacted layer of 32 mm gravel on top.



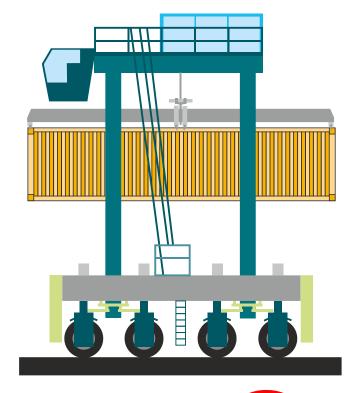
## Case studies – container terminal Eurogate Hamburg

### > Asphalt mix construction:

- Base course: 15 cm AC 22 B S, 50 % graded RAP.
- 2 % neat binder, 50/70 + 4,0 M.-% FT-wax
- Hamburg Wheel-Tracking-Test: 3,3 mm rut depth\*
- > Surface course: 3 cm AC 8 D S, 20 % graded RAP:
  - Binder: Nynas Endura Z2 (incl. FT-wax)
  - Hamburg Wheel-Tracking-Test: 2,7 mm rut depth\*




<sup>\*</sup>Steel wheel in water bath @ 60° C


- Initial project for FT-wax application in container terminals:
- > Realization in 2000, review in 2007.
- > 88 % growth in container movements from 2000 to 2007.
- > Growth in container movements could not be compensated by increasing the area.
- Requirements for the asphalt mix design were distinguished in terminal roads and the extremely loaded HO-Tracks.







- > Truck weight: 40 t
- Load per axle: 8 t



- > Van carrier weight 95 t
- > Load per axle: 23,75 t



#### > HO-Tracks:

- Special area where van-carrier load/unload a truck with full containers.
- Highest loads occur because narrow tracks are constantly exposed to enormous wheel pressure of the Van-Carriers.
- Van-Carrier operate 365 days a year, 24 hours a day.
- Initially, HO-tracks were paved with a standard "road" asphalt without FT-wax
  - 8 cm binder, 6 cm SMA.
  - Within a few months extreme deformations occurred!





- > Following actions were conducted to improve deformation resistance:
  - Using very hard PmB (10/40-65 A RC).
  - Using **4,0 M.-% FT-wax**:
    - Improve workability without increasing the mixing temperature.
    - Improve deformation resistance in service temperature range.

#### > Resulting asphalt mix construction:

- Base course: 10 cm AC 22 T S, 4,1 mm rut depth\*.
- Binder course: 10 cm AC 16 B S, 1,5 mm rut depth\*.
- Surface course: 4 cm SMA 11 S, 2,7 mm rut depth\*.

\*Steel wheel in water bath @ 60°



- After seven years of service the deformation was determined by analyzing three cross sections.
- > Cross sections were taken from the areas where the van carriers usually start and stop.
- > The deformation was 13 mm in average and was split to the courses as follows:

Sub grade: 35 %

- Base course: 20 %

Binder course: 0 %

Surface course: 45 %



With regards to the massive loads caused by the van carriers and the growth in container movement the deformations are relatively low!



## Case studies – container terminals summary

- > Container terminal projects usually need special asphalt mix design because of the following requirements:
  - ✓ Extremely high loads must be absorbed.
  - ✓ Optimal compaction is very important.
  - ✓ Process reliability is essential.
- > FT-wax modification helps to meet these special requirements for container terminal asphalt pavements, this has been shown in various projects all over the world!



### Case studies – Bus terminal Remscheid

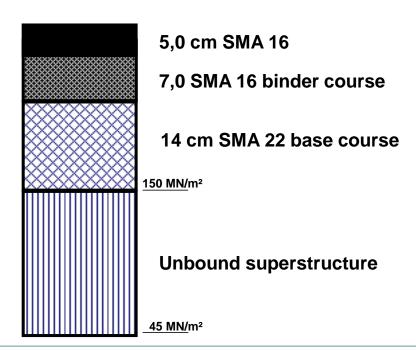
#### Initial situation:

- Severe deformations
- Rutting
- Cracking
- Major maintenance or renewal at east every three years



#### Causes:

- Very high horizontal and vertical loads
- both static and dynamic
- Lane driving
- Steep gradient
- Radiation heat by busses






### Case studies – Bus terminal Remscheid

# Concept for very high horizontal and vertical loads (Bus terminals/lanes)

Wearing course with increased thickness and hard binder with increased polymer and FT-wax content for both wearing and binder course.



J. RETTENMAIER & SÖHNE GMBH + CO KG



## Case studies – Bus terminal Remscheid

## After 7 years under traffic!









### **Final Conclusion**



"The bitterness of poor quality remains long after the sweetness of low price is forgotten."

**Benjamin Franklin** 

# Thank you for your attention!

J. Rettenmaier & Söhne GmbH & Co. KG

Jens Christian Arnold

**Product Manager** 

**Business Unit Functional Asphalt Additives** 

Mobile: +49 171 212 86 72

jens.arnold@jrs.de